翻訳と辞書
Words near each other
・ DoubleTree by Hilton Hotel Phoenix Tempe
・ DoubleTree by Hilton Hotel Shanghai–Pudong
・ DoubleTree Hotel Cleveland
・ DoubleTree Suites by Hilton Orlando – Lake Buena Vista
・ DoubleTwist
・ Doublet–triplet splitting problem
・ Doubleview, Western Australia
・ Doubling
・ Doubling (psychodrama)
・ Doubling (textiles)
・ Doubling Point Light
・ Doubling Point Range Lights
・ Doubling space
・ Doubling the cube
・ Doubling time
Doubling-oriented Doche–Icart–Kohel curve
・ Doubloon
・ Doublure
・ Doublure (bookbinding)
・ Doubly articulated consonant
・ Doubly connected edge list
・ Doubly fed electric machine
・ Doubly ionized oxygen
・ Doubly labeled water
・ Doubly linked face list
・ Doubly linked list
・ Doubly logarithmic tree
・ Doubly periodic function
・ Doubly special relativity
・ Doubly stochastic


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Doubling-oriented Doche–Icart–Kohel curve : ウィキペディア英語版
Doubling-oriented Doche–Icart–Kohel curve

In mathematics, the doubling-oriented Doche–Icart–Kohel curve is a form in which an elliptic curve can be written. It is a special case of Weierstrass form and it is also important in elliptic-curve cryptography because the doubling speeds up considerably (computing as composition of 2-isogeny and its dual).
It has been introduced by Christophe Doche, Thomas Icart, and David R. Kohel in 〔Christophe Doche, Thomas Icart, and David R. Kohel, ''Efficient Scalar Multiplication by Isogeny Decompositions''〕
==Definition==

Let K be a field and let a\in K. Then, the Doubling-oriented Doche–Icart–Kohel curve with parameter ''a'' in affine coordinates is represented by:
y^2=x^3+ax^2+16ax
Equivalently, in projective coordinates:
ZY^2=X^3+aZX^2+16aXZ^2,
with x=\frac and y=\frac .
Notice that, since this curve is a special case of Weierstrass form, transformations to the most common form of elliptic curve (Weierstrass form) are not needed.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Doubling-oriented Doche–Icart–Kohel curve」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.